Direct Volume Rendering of Curvilinear Volumes

Jane Wilhelms, Judy Challinger,
Naim Alper, and Shankar Ramamoorthy
University of California, Santa Cruz

Arsi Vaziri,

NAS/NASA-Ames Research Center

Abstract

Direct volume rendering can visualize sampled 3D scalar
data as a continuous medium or extract features. However,
it is generally slow. Furthermore, most algorithms for
direct volume rendering have assumed rectilinear gridded
data. This paper discusses methods for using direct volume
rendering when the original volume is curvilinear, i.e.,
is divided into six-sided cells which are not necessarily
equilateral hexahedra. Omne approach is to ray-cast such
volumes directly. An alternative approach is to interpolate
the sample volumes to a rectilinear grid, and use this regular
volume for rendering. Advantages and disadvantages of the
two approaches in terms of speed and image quality are

explored.

1 Introduction

Direct volume rendering creates an image of sampled vol-
ume data by mapping from the data values directly to
pixel contributions, without the creation of intermediate
geometric representations. By using sophisticated mapping
schemes, the volume can be visualized as a semi-transparent
continuous medium or features such as isosurfaces can be
extracted, or both [DCH88, Lev88, Sab88, UK88, Wes90].
This extreme flexibility makes direct volume rendering an
attractive technique. However, it is slow, and considerable
recalculation is necessary to create images from alternate
viewpoints. Methods that create intermediate geometrical
representations, such as polygon meshes, have the advantage
that algorithms available in hardware on graphics worksta-
tions can make rendering such representations interactive.
Another important limitation on most published methods
in direct volume rendering is that data is generally assumed
to be sampled in a rectilinear grid. In many applications,

sample data is not distributed in this regular a fashion. Grids
may be warped to fit around objects or consist of highly
irregular sample patterns.

In this paper, we explore the use of direct volume
rendering for data from computational fluid dynamics.
Relatively little work has been done in this area [SN89].
The sample points are assumed to lie in a ”curvilinear grid”,
where space is subdivided into cells defined by eight corner
points, but the faces of the cells are not necessarily planar
and the grid points may not lie on orthogonal axes [Fle88,
plo89]. We study two approaches:

1. Cast rays through the curvilinear volume, extending ray-
casting methods for rectilinear volumes [Lev88, Cha90].

2. Interpolate between the sample points to find new
sample points arranged in a rectilinear grid, and use
traditional ray-casting on the new volume.

The first approach is less prone to accumulation of inter-
polation errors and easily accommodates irregular sampling
densities. The second approach is generally much faster,
as many simplifying assumptions can be made in traversing
regular grids.

Section 2 provides background in direct volume rendering.
Section 3 describes the ray-casting method used. Section 4
describes the interpolation methods used to convert curvi-
linear volumes to rectilinear ones. Section 5 provides some
experimental results. Section 6 describes extensions to the
work using hierarchical interpolation. Section 7 describes
some encouraging results on using volume visualization to
study turbulence. Section 8 draws conclusions.

2 Overview of Volume Rendering

For direct volume rendering, visual contributions from the
volume to each pixel must be calculated by mapping the
scalar sample values within the volume to color and opacity.
Early work using this method (see, e.g. [Wil90b] for
references) used quite simple mappings. Recent work has
concentrated on flexible and sophisticated mappings which
can represent the volume as a continuous semi-transparent
medium, extract features, or use some combination of both
[DCHS88, Lev88, Sab88, UKB88, Wes90]. The two main
approaches used for volume rendering are ray-casting and
projection.

e In ray-casting, rays are cast out from the viewer through
the hypothetical screen pixels. The contributions to the
ray from points [Lev88] or regions [Sab88, UK88] along
it are calculated. This approach is simple to implement,
but is liable to aliasing problems and is possibly less
amenable to parallel processing [UK88].

e In projection methods, each subvolume of the volume is
projected onto the hypothetical screen pixels, and its
contribution to the pixels affected is calculated [UKS88,
DCH88, Wes90]. The projection of subvolumes can be
more complex to implement, though it has potential for
taking advantage of coherence [Wil90a] and is less liable
to aliasing.

Another variation in the approaches described is that
some methods [DCHS88, Sab88, Wes90] treat the samples
as vozels, 1.e. constant data value regions surrounding the
grid location, while others [Lev88, UK88, Wil90a] treat the
samples as the corners of hexahedral cells. A continuous
function is generally assumed to pass through the cell as
defined by the corner sample values. Treating the volumes
as voxels makes fewer assumptions about the data but
can lead to rather blocky images. Treating the volumes
as cells produces smoother visual images but assumes
that the interpolation method is appropriate [WVG90b].
Interpolation can be a significant cost in the algorithm.

3 Ray-Casting Volumes

We have used the ray-casting approach to direct volume
rendering, as seeming more amenable for implementation
with irregular volumes [Cha90]. The renderer can handle
a mixture of volumetric and geometric objects [Lev89]
and works with both rectilinear and curvilinear volumes.
Implementation was in the object-oriented language C++,
taking advantage of the ease with which software can be
extended to incorporate new renderable objects [Poh8&9].
The object-oriented paradigm for design specifies that
software objects encapsulate both the data and the functions
that process it. Though the potential graphical primitives
are diverse and the methods required to process them differ
greatly, visualization involves the same three tasks. Each
object type provides virtual methods for performing these
tasks on its own representation: (1) A list of potentially
visible objects on each scanline is updated. (2) For each
ray passing though a given pixel, an ordered list (itself an
object) of ray-object intersections is calculated by examining
the potentially visible objects. (3) The shading contribution
of each ray-object intersection to the pixel (also an object,
which can composite itself) is calculated.

3.1 Rectilinear Volumetric Primitives

Regular rectangular volumes are handled in a fairly tradi-
tional fashion [Lev88]. The volume is positioned and the
orientation matrix stored. Intersections of a ray with the
volume bounding box are determined by transforming the
bounding box by the same transformation that would align
the ray with the z axis [Rog85] and then testing each of

the six bounding box faces for intersections with the z-axis.
The entry and exit intersection points, if any, are added
to the z-ordered intersection list. The starting and ending
points of the ray-object intersection list are mapped back
to grid values in the original array, using the inverse of the
transformation matrix. Sample values are acquired at user-
specified equidistant steps using one of three user-specified
interpolation methods (see Section 4) and used to index
into color and opacity transfer function tables [UK88]. The
contribution from each of the samples is composited into
the pixel [PD84]. This process ends when the exit point is
reached, or the pixel becomes opaque. If an isosurface has
been requested as well, a check is made between each pair
of sample points to see if the isosurface threshold has been

crossed [GO89].

3.2 Geometric Primitives

Treatment of geometric objects (at present, triangles or
triangle-meshes) is much like that of rectilinear volumes:
the triangles are transformed by the orientation matrix that
takes the ray to the z-axis, intersections with the z axis are
calculated, and the intersections are added to the ordered
intersection list. For shading, the barycentric coordinates
of the intersection point with respect to each triangle are
computed and used to interpolate the vertex normals to
obtain the intersection normal. Lambertian ambient and
diffuse shading is used [FDFH90]. The shading contribution
is composited into the current pixel with full opacity.

3.3 Curvilinear Volumetric Primitives

The curvilinear volumes consist of both the data sample val-
ues and a computational grid describing the actual physical
location of each sample point [plo89]. In its physical-space
coordinate system, the faces bounding the element may
be degenerate, non-planar, and non-orthogonal, presenting
additional problems. Adding curvilinear volume primitives
simply involved designing and implementing structures and
methods needed to volume render the new primitive. For
purposes of intersection, an element (a six-sided cell) is
considered to be bounded by twelve triangles (to ensure
planarity). Assuming convexity, two intersections are gen-
erated if the ray intersects the element. The intersections
are computed using the same technique described for the
triangle primitive, and the shading method for an element
is like that for a rectilinear volume. Because the number
of elements in a curvilinear volume can be quite large,
data structures and methods are supplied to support a scan
line list and active element list to reduce the number of
intersection calculations that must be performed for each
ray.

4 Interpolation of Curvilinear Volumes

The curvilinear input grid must be interpolated to produce
a rectilinear output grid. (We use the term “interpolation”,
rather than “resampling” to clearly indicate that the values
in the new output grid do not have the same validity as the
points in the original sample grid, assuming the underlying

Po

‘closest’

e

start

Figure 1: A two-dimensional grid where the greedy grid
search algorithm fails

function which was sampled to create the original grid is not
used.) The input grid consists of hexahedral cells bounded
by eight vertices numbered 0, 1, ..., 7, the coordinates of

the i ' vertex being (zi,yi, z;), and the associated data
value is denoted F;. The data values are assumed to be the
values of an unknown ‘smooth’ (at least locally) trivariate
function f(z,y,z), which we call the underlying function.
An estimation of f at a point P is denoted as F(P).

Let P = (z,y,z) be the point at which the value of the
underlying function is to be estimated. The interpolation
schemes examined here all proceed as follows :

1. Find the cell of the input grid within which P lies.

2. Estimate the function value at P based on the known
values at the corners of this cell.

To find the input cell that contains the point P, the input
grid edges are traversed until a point is reached such that all
adjacent points are further away from P. It is assumed that
that grid point is closest to P. This greedy algorithm will
sometimes fail to produce the correct result (see Figure 1).
! Once the nearest grid vertex has been located, it is then
easy to find which of the (at most) eight cells incident on
this vertex contains P.

The three methods explored are nearest neighbor, trilinear
interpolation, and inverse weighting. The nearest neighbor
method is simplistic the sample value at a point is
estimated to be the same as the value at the nearest point on
the original grid. This gives at best a rough estimate of the
nature of the volume. The other two methods are described
here in more detail.

These schemes are local — the function value at a point
is estimated based only on points that are ‘close’ to P. All
three ensure that at the corners of a cell the estimated value
matches the known function value at that point; i.e., they are
interpolation schemes not approximation schemes. Though

1The point location problem for two-dimensional grids has
been well studied and optimal algorithms are available. The three-
dimensional case has not received much attention thus far.

they ensure Cy continuity at vertices of the grid, they cannot
guarantee even Cy continuity along interior faces of the grid.
This creates a problem: points lying on interior faces but
not on interior edges are contained in the two cells that
share that face; points on interior edges are contained in
the four cells that share that edge. Depending on which
cell is considered to contain the point different estimates are
obtained.

4.1 Trilinear Interpolation

The trilinear interpolation approach assumes that at any
point P = (z,y,z) within any cell of the input grid the
underlying function can be approximated as

F(P)y=a+bz+cy+dz+ezy+ frz+ gyz + hzyz

where a, b, ..., h are suitable constants. The function
f is required to interpolate the known values at the eight
cell corners. Substituting in the known function values and
locations for the eight cell corners provides eight equations
in the eight unknowns a through h. Solving this set of
equations provides the cell’s trilinear interpolation function.

If the cell is an orthogonally oriented rectangular paral-
lelopiped with vertex 0 at the origin the constants a, ..., h
can be computed directly, but this is usually not the case
with curvilinear volumes.

Trilinear interpolation is not a very satisfactory method.
The underlying function is assumed to vary linearly along
lines parallel to the cartesian axes, as a quadratic through
planes parallel to the planes defined by these axes, and
as a cubic elsewhere. For a rectilinear grid oriented along
the cartesian axes, the function varies linearly along edges,
as a quadratic across cell faces, and as a cubic along
diagonals through the cell. Rotating the cell relative to
the underlying frame produces quite a different estimate of
function behavior through the cell. It is possible, even with
rectilinear cells, to be unable to find a trilinear function
defined by the corner values in certain orientations; for
example, consider a cell rotated at 45 degrees so that
the diagonals lie parallel to the cartesian axes. With
irregular grids, it may not be possible to orient the cell so
that its edges lie along cartesian axes, and the cell faces
may not be planar. Degenerate cases can occur where
a trilinear function cannot be fit. More commonly, the
function through the cell face may be trilinear and vary
depending upon which cell on either side of the face the
point is assumed to belong to. Therefore, Cy continuity
cannot be assumed. (For properly-oriented rectangular grids
trilinear interpolation does at least provide Cp continuity
along interior faces.)

4.2 Inverse Distance Weighted Interpolation

For distance weighted interpolation schemes [BS84, BL84,
Fra82], the value of the underlying function at a point is
‘influenced’ by its value at other nearby points, influence
decreasing with increasing distance from the point.

Let P be a point at which the underlying function
f(z,y,z) must be estimated; further, assume that the

function value is known at a set of points P, P», ..., Py
that are close to P. Let F; denote the (known) value of f
at P;, 1 <1 < n. The value of f at P is estimated as a
weighted sum of the various Fj, i.e.,

F(P) = Zn: w; Fy
=1

where the weight w; associated with the point P; depends
inversely on the distance between P and P;. This inverse
dependence ensures that the influence of the point P;
decreases with distance from P. The weights are usually
normalized so they sum to one.

In this implementation, the set of nearby points are taken
to be the eight vertices of the cell within which the point
P = (z,y, z) lies. The particular weighting scheme used was
presented in [BS84]. The weights are computed as follows :

wi = [Py TJla()P

k=0 j=0 1=0
k#1i 1#;
Here d;(P) is the Euclidean distance between the jth vertex

of the cell and the point P. Note that if P coincides with
the jth vertex of the cell, then w; = 1, and w; = 0,1 # j;
therefore, F(P) = Fj.

As presented above, the inverse distance weighting scheme
will, like trilinear interpolation, not guarantee Cy continuity
along interior faces of the grid. This problem can be
minimized in the following (somewhat ad hoc) manner: for
points on interior faces we use all the vertices of all the cells
that contain that point. In fact, it would be preferable to
extend the scheme to consider samples beyond a particular
cell. Interpolation may produce samples that are more
sparse than the original volume, at least locally. Considering
only surrounding cells in determining values for interpolated
points in effect ignores the contribution of cells in the original
volume that do not happen to include an interpolated point.
This will always be a problem with very local methods of
interpolation. Furthermore, with arbitrary hexahedral cells,
the cell vertices may be much further from the new point
than vertices belonging to other neighboring cells.

5 Experimental Results

These methods have been explored on a computational fluid
dynamics simulation of a ”blunt fin” from NASA-Ames
Research Center, using the density scalar field for rendering.
The original data was interpolated to create two rectilinear
volumes: Interpolate-1 data with approximately the same
number of data points as the original, and Interpolate-
2 data with 8 times as many data points. There are
three interpolated volumes of each size, differing by whether
the interpolation method was nearest neighbor, inverse
distance, or trilinear interpolation. For rendering, the same
interpolation method was used as for interpolation; e.g.,
the volume sampled using nearest neighbor methods was
rendered using nearest neighbor methods. Three issues come
to light in examining the interpolated data (see Table 1).

1. Extraneous data points must be generated which refer to
regions outside the warped space, because the rectilinear
volume includes the original. Samples in this region can
be made transparent, but it does cost memory usage as
well as some irrelevent processing time.

2. More serious, the minimum distance between sample
points is very small in the warped grid to give most
information in regions of greatest interest. However,
the interpolated sample points are equidistant along
each coordinate axis and the minimum distance between
interpolated data points is much larger. In order to
make the minimum distance for the interpolate data
the same as in the original file, very large interpolated
volumes would have to be created. Otherwise, detail is
lost, and (in the present implementation) cells may be
missed. Because we believe speed is the only justification
for interpolating volumes, we choose to accept this and
sample more sparsely than the closest original points.
Section 6 describes a recently implemented alternate
approach.

3. Interpolation moves the maximum and minimum values
of the original file toward the mean, thus extreme values
are lost.

Table 2 presents some results on interpolation and
rendering. Interpolation times are reasonably close for
all three methods.
to create the volume, its expense is less important than
rendering costs. It could be brought down by better
traversal techniques. Rendering was done on an SGI
Iris 4D50GT. Note that rendering a rectilinear grid is
significantly faster even when the volume involved is 8

As this cost is only incurred once

times as large. ‘Trilinear coefficients were precalculated
for curvilinear volumes; this precalculation took about 110
seconds. By far the predominant cost with curvilinear
volumes is intersection testing to determine the location of
the ray within the volume. The use of more sophisticated
location-finding and coherence will reduce this, but it seems
unlikely that rendering curvilinear volumes will ever be as
fast as rectilinear volumes.

Images were rendered using 128x128 rays, zooming in on
the middle region of the volume. The transfer function
mapped low values to green, medium to blue, and high to
red. Opacity increased linearly. Pixels were replicated for
final pictures.

Figure 2 indicates that the general appearance of all
sample volumes is much the same, though the nearest
neighbor method presents a decidedly blocky appearance. In
the original volume, the cells are smallest near the leading
edge of the blunt fin. It is in this region that the effect of
the relatively large cells of the interpolated volumes can be
seen. The preponderance of blue, and the less amount of
red, in interpolated images is due to the shift toward the
mean during interpolation. The green along the leading fin
edge is due to the renderer estimating color values for cells
partly outside the original volume. This could be avoided
by having the renderer ignore such cells.

Curvilinear Volume: Nearest Neighbor, Weighted Average, Trilinear Interpolation

Interpolate-1 Volumes: Nearest Neighbor, Weighted Average, Trilinear Interpolation

Interpolate-2 Volumes: Nearest Neighbor, Weighted Average, Trilinear Interpolation

Figure 2: Comparison of Images

Blunt Fin

|| Original Data

Interpolate 1

Interpolate 2

Resolution 40x32x32 40x32x32 80x64x64
Number Samples 40,960 40,960 327,680
Smallest Distance 0.019 0.18 0.09
Greatest Distance 3.32 0.57 0.28
Min/Max Values

Original 0.19/4.98 - -
Nearest Neighbor - 0.38/3.48 0.34/4.62
Inverse Distance - 0.38/3.26 0.36/4.36
Trilinear Interpolation - 0.40/3.26 0.36/4.31

Table 1: Volume Data Characteristics

Blunt Fin

|| Nearest Neighbor

Inverse Weights

Trilinear Interp.

Interpolation Time

—Interpolate 1 114.7 128.2 230.4
—Interpolate 2 936.7 1030.5 1061.5
Rendering Time

—Original Data 700.0 796.2 807.8
—Interpolate 1 94.1 189.7 64.7
—Interpolate 2 152.6 306.4 97.7

Table 2: Timing Tests (user/system seconds)

6 Hierarchical Extensions

Use of a hierarchical rectilinear grid avoids many of the
problems of interpolating from curvilinear volumes with
irregular sampling densities. We are exploring the use of
an octree data structure for the interpolated volume. To
create the octree, sample points in the original curvilinear
grid are added one by one to the (originally empty) octree.
Whenever a particular partition of the octree contains
more than some user-specified number of curvilinear data
samples, that node is split into eight subnodes. When
all the curvilinear samples are added to the octree, an
interpolation step calculates the estimated data value at the
eight corners of each octree partition. This volume can then
be rendered using a hierarchical volume ray-tracer. The
coherent projection approach [Wil90a] is also being extended
to render hierarchical volumes. Related work using octrees
for isosurface generation is [WVG90a).

Alternatively, to avoid interpolation errors in creating the
octree, it would be possible to use the octree together with
the original curvilinear volume and render using values from
the original sample values.

7 Volume Visualization of Turbulence

Turbulence is the irregular regime of fluid motion which
randomly varies with space and time. In spite of more
than a century of research, it remains an unsolved problem
of modern physics. The study of coherent structures of

a turbulent flow field and direct numerical simulation of

turbulence [MK86, Spa88] are currently the mainstream
approach to turbulent research. Direct numerical simulation
of the turbulent boundary layer over a flat plate by Spalart
[Spa88] provides flow data at 9.4 million grid points for
104 time steps. The resulting 54 gigabytes of turbulence
database contains values for three velocity components,
three vorticity components, and pressure at each node.
Volume visualization is applied to a 65 x 50 x 55 sub-
volume of the data set [RKS89] using an implementation
of VBUFFER [UK88] on a Stardent GS-1000.

Direct volume rendering of space filling 3-D data, such
as fluid flow data,
like or fuzzy” images.

characteristically results in ”cloud-
However, by applying additional
gradient shading to the volume-rendered turbulent flow
data, crisp and solid-looking images can be obtained. The
additional steps are crucial to visualization of current data
since the final image should contain a clear depiction of
the turbulent flow structures. Figure 3 represents the
vertical component of velocity solid-texture-mapped onto
the streamwise velocity component. Applying gradient
shading has resulted in a crisp image of vortex structures in
a turbulent flow where contributions from ambient, diffuse,

specular, and glossiness are also added to the image.

7.1 Turbulent Flow Structures: “The hairpin
vortex”

Coherent structures in turbulence have been identified by

researchers for some time [KRSR67]. Evidence for existence

of a basic vortex structure, called the “hairpin or horseshoe

Figure 3: Volume Visualization of Turbulence - Revealing the Hairpin Vortex Structure

vortex” has been found in experiments [HB81] and in
numerical solutions [KM86]. The hairpin (or horseshoe)
vortices are the primary agents of several turbulent models.
Direct visualization of these and other vortical structures has
been in general difficult. Applying the volume visualization
method outlined above has resulted in a clear depiction of
the hairpin vortex and other structures in the turbulent flow
over a flat plate. It is possible to study the growth of the
hairpin vortex at different streamwise locations since the
structure is easily recognizable. Downstream and to the
right of the bounding walls is populated by a number of
structures; they include a tornado-like horseshoe vortex with

the head turned down, also found by [BR71].

The turbulent flow can be viewed as a tangle of vortices
undergoing various types of interaction [WH90]. Volume
visualization of the coherent structures provides the basic
tool to conduct "numerical flow visualization” experiments
revealing the embedded details. The combination of texture-
mapping and gradient-shading results in an image clearly
superior to a traditionally volume-rendered images. Flow
structures in the image become evident only after the gra-
dient shading has been applied. This representation, unlike
geometrical rendering techniques, preserves full integrity of
the original dataset. It is thus more readily adaptable to
analysis, and extraction of quantitative information. A
study of the temporal development of turbulent structures
through animation of time sequences (in preparation) can

provide a useful tool to enhance our understanding of vortex
formation, evolution, and dynamics.

& Conclusions

Evidence suggests that reinterpolation to a rectilinear
volume provides an acceptable method for faster direct
volume rendering of curvilinear volumes. However, evidence
also indicates that the possibility of erroneous images is
a serious problem, particularly when regular sampling is
used. This must be taken into account in interpreting
the images. Interpolation to an adaptively subdivided
hierarchical volume holds promise of avoiding the worst
of these problems. Future work to improve the speed
of intersection algorithms may make methods that work
directly on the original data more attractive.

Acknowledgements
This work was supported by a NAS NASA-Ames Research

Center Consortium Agreement. We appreciate the use of
NASA-Ames data sets for this study and wish especially
to thank Drs. Thomas Lasinski and Sam Uselton for their
help. This work was also supported by a State of California
Micro-Electronics Grant. We also wish to thank Silicon
Graphics Inc., Digital Equipment Corporation, and Sun for
their donations of equipment and Stardent Computers for
their loan of a Titan.

References

[BL84]

[BR71]

[BS84]

[Cha90]

[DCHSS]

[FDFH90]

[Fle88]

[Frag82]

[GO8Y)]

[HBs1]
[KM86]

[KRSR67]

[Lev8s]

[Levd9]

[MKS86]

[PDs4]

[plod9]
[Poh8&9]

R. E. Barnhill and F. F. Little. Three- and four-
dimensional surfaces. Rocky Mountain Journal
of Mathematics, 14(1):77 — 102, 1984.

G.L. Brown and A. Roshko. AGARD-CP-93,
23, 1971.

R. E. Barnhill and S. E. Stead. Multistage
trivariate surfaces. Rocky Mountain Journal of
mathematics, 14(1):103 — 118, 1984.

Judith Challinger. Object-Oriented Rendering
of Volumetric and Geometric Primitives. Mas-
ter’s thesis, University of California, Santa Cruz,
1990.

Robert A. Drebin, Loren Carpenter,
Pat Hanrahan. Volume rendering. Com-
puter Graphics (ACM Siggraph Proceedings),
22(4):65-74, July 1988.

and

James D. Foley, Andies Van Dam, Steven Feiner,
and John Hughes. Computer Graphics: Princi-
ples and Practice. Addison-Wesley Publishing
Company, Reading, Mass., 2 edition, 1990.

C. A. J. Fletcher. Computational Techniques for
Fluid Dynamics. Springer-Verlag, 1988.

R. Franke. Scattered data interpolation : Tests
of some methods. Mathematics of Computation,
38(157):181 — 199, 1982.

David S. Goodsell and Arthur J. Olson. Molec-
ular applications of volume rendering and 3-D
texture maps. In Volume Visualization Work-
shop, pages 27-31, Chapel Hill, NC, May 1989.
Dept. of Computer Science, University of North
Carolina.

M. R. Head and P. Bandyopadhyay. J. of Fluid
Mechanics, 107:297, 1981.

J. Kim and P. Moin. J. Fluid Mechanics, 30:741,
1986.

S. J. Kline, W. C. Reynolds, F. A. Schraub, and
P. W. Runstadler. J. Fluid Mechanics, 30:741,
1967.

Marc Levoy. Display of surfaces from volume
data. IEEFE Computer Graphics and Applica-
tions, 8(3):29-37, March 1988.

Marc Levoy. Display of Surfaces From Volume
Data. PhD thesis, The University of North
Carolina at Chapel Hill, 1989.

P. Moin and J. Kim. J. of Fluid Mechanics,
155:61, 1986.

Thomas Porter and Tom Duff. Compositing dig-
ital images. Computer Graphics (ACM Siggraph
Proceedings), 18(3):253-260, July 1984.

PLOT3D User’s Manual, 1989.

Ira Pohl. C++ for C Programmers. Ben-
jamin/Cummings Publishing, California, 1989.

[RKS89]

[Rog85]

[Sab88]

[SN89]

[Spa88]

[UK88]

[Wes90]

[WH90]

[Wil90a]

[Wil90b]

[WVG90a]

[WVG90b]

S. K. Robinson, S. J. Kline, and P. R. Spalart.
Technical Report TM-102191, NASA-Ames Re-
search Center, Moffett Field, CA, 1989.

David F. Rogers. Procedural Elements for
Computer Graphics. McGraw-Hill, Inc., 1985.

Paolo Sabella. A rendering algorithm for visual-
izing 3D scalar fields. Computer Graphics (ACM
Siggraph Proceedings), 22(4):51-58, July 1988.

Peter Shirley and Henry Neeman. Volume vi-
sualization at the center for supercomputing re-
search and development. In Volume Visualiza-
tion Workshop, pages 17-20, Chapel Hill, NC,
May 1989. Dept. of Computer Science, Univer-

sity of North Carolina.

P. R. Spalart. J. of Fluid Mechanics, 187:61,
1988.

Craig Upson and Michael Keeler. The v-buffer:
Visible volume rendering. Computer Graphics
(ACM Siggraph Proceedings), 22(4):59-64, July
1988.

Lee Westover. Footprint evaluation for volume
rendering. Computer Graphics (ACM Siggraph
Proceedings), 24(4):367-76, August 1990.

J. M. Wallace and F. Hussain. Appl. Mech. Rewv,
43:5203, 1990.

Jane Wilhelms. A coherent projection approach
for direct volume rendering. Technical Report
UCSC-CRL-90-38, CIS Board, University of
California, Santa Cruz, 1990.

Jane Wilhelms. Visualizing sampled volume
data. In Nadia Magnenat-Thalmann and Daniel
Thalmann, editors, Scientific Visualization and
Graphics Simulation. John Wiley and Sons
Limited, 1990.

Jane Wilhelms and Allen Van Gelder. Octrees
for faster isosurface generation. Technical Re-
port UCSC-CRL-90-28, CIS Board, University
of California, Santa Cruz, 1990. Extended ab-
stract to appear in ACM Volume Visualization
Workshop 1990.

Jane Wilhelms and Allen Van Gelder. Topologi-
cal ambiguities in isosurface generation. Techni-
cal Report UCSC-CRL-90-14, CIS Board, Uni-
versity of California, Santa Cruz, 1990. Ex-
tended abstract to appear in ACM Volume Vi-
sualization Workshop 1990.

